Data science Software Course Training in Ameerpet Hyderabad

Data science Software Course Training in Ameerpet Hyderabad

Tuesday, 16 August 2016

Flume Lab

***************************om aim hreem sreem **************************
sreeram hadoop notes
sreeram flume notes for practice



conf/agent1.conf
_______________________

# example.conf: A single-node Flume configuration

# Name the components on this agent
a1.sources = src1
a1.sinks = s1
a1.channels = c1

# Describe/configure source1
a1.sources.src1.type = exec
a1.sources.src1.shell = /bin/bash -c
a1.sources.src1.command=cat f1


# Describe sin
a1.sinks.s1.type = hdfs
a1.sinks.s1.hdfs.path=hdfs://quickstart.cloudera/user/cloudera/myFlume

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1200
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.src1.channels = c1
a1.sinks.s1.channel = c1

############################################
submit above flow using following command

[cloudera@quickstart ~]$ hadoop fs -mkdir myFlume

[cloudera@quickstart ~]$ flume-ng agent --conf conf --conf-file conf/agent1.conf --name a1 -Dflume.root.logger=INFO,console

[cloudera@quickstart ~]$ hadoop fs -ls myFlume

note: By default sink will write in  sequence format

The Risk in above flow is, if channel failed or channel system down, 
 data will be missed.  to provide fault tolerence for channel use following flow.

***********************om aim hreem sreem***********************************

sreeram hadoop notes:
sreeram flume notes for practice:

conf/agent2.conf
___________________

# example.conf: A single-node Flume configuration

# Name the components on this agent
a1.sources = src1
a1.sinks = s1 s2 
a1.channels = c1 c2

# Describe/configure source1
a1.sources.src1.type = exec
a1.sources.src1.shell = /bin/bash -c
a1.sources.src1.command=cat f1


# Describe sin
a1.sinks.s1.type = hdfs
a1.sinks.s1.hdfs.path=hdfs://quickstart.cloudera/user/cloudera/urFlume

a1.sinks.s2.type = hdfs
a1.sinks.s2.hdfs.path=hdfs://quickstart.cloudera/user/cloudera/urFlume


# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1200
a1.channels.c1.transactionCapacity = 100

a1.channels.c2.type = memory
a1.channels.c2.capacity = 1200
a1.channels.c2.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.src1.channels = c1 c2
a1.sinks.s1.channel = c1
a1.sinks.s2.channel = c2

##################################

[cloudera@quickstart ~]$ hadoop fs -mkdir urFlume
[cloudera@quickstart ~]$ flume-ng agent --conf conf --conf-file conf/agent2.conf --name a1 -Dflume.root.logger=INFO,console

[cloudera@quickstart ~]$ hadoop fs -ls urFlume

from above flow, src1 is writing into c1 and c2 channels,
  if one channel fails, still data available in another.
but if no failure happend data will be duplicated in target hadoop directory.
so before processing data, we need eliminated duplicate records.

******************om aim hreem sreem**********************************

sreeram hadoop notes:
sreeram flume notes for practice:
Task --> importing from Hive Table

conf/agent3.conf
______________________________
# example.conf: A single-node Flume configuration

# Name the components on this agent
a1.sources = src1
a1.sinks = s1
a1.channels = c1

# Describe/configure source1
a1.sources.src1.type = exec
a1.sources.src1.shell = /bin/bash -c
a1.sources.src1.command=hive -e 'select * from mraw'


# Describe sin
a1.sinks.s1.type = hdfs
a1.sinks.s1.hdfs.path=hdfs://quickstart.cloudera/user/cloudera/ourFlume

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1200
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.src1.channels = c1
a1.sinks.s1.channel = c1

#############################################

[cloudera@quickstart ~]$ hive
hive> create table mraw(line string);
OK
Time taken: 2.218 seconds
hive> load data local inpath 'f1' into table mraw;
hive> select * from mraw limit 5;
OK
aaaaaaaaaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
cccccccccccccccccccccccccccccc
ddddddddddddddddddddddddddd
Time taken: 0.341 seconds, Fetched: 5 row(s)
hive> 

[cloudera@quickstart ~]$ hadoop fs -mkdir ourFlume

[cloudera@quickstart ~]$ flume-ng agent --conf conf --conf-file conf/agent3.conf --name a1 -Dflume.root.logger=INFO,console

[cloudera@quickstart ~]$ hadoop fs -ls ourFlume

in all above cases , output will be in sequence file format.

*****************************om aim hreem sreem ***************************

sreeram hadoop notes:
sreeram flume notes for practice:

conf/agent4.conf
________________________________




# example.conf: A single-node Flume configuration

# Name the components on this agent
a1.sources = src1
a1.sinks = s1
a1.channels = c1

# Describe/configure source1
a1.sources.src1.type = exec
a1.sources.src1.shell = /bin/bash -c
a1.sources.src1.command=cat f1


# Describe sin
a1.sinks.s1.type = hdfs
a1.sinks.s1.hdfs.fileType=DataStream
a1.sinks.s1.hdfs.writeFormat=Text
a1.sinks.s1.hdfs.path=hdfs://quickstart.cloudera/user/cloudera/naFlume


# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1200
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.src1.channels = c1
a1.sinks.s1.channel = c1

######################################

 above flow will write output in Text Format.

[cloudera@quickstart ~]$ hadoop fs -mkdir naFlume

[cloudera@quickstart ~]$ flume-ng agent --conf conf --conf-file conf/agent4.conf --name a1 -Dflume.root.logger=INFO,console

[cloudera@quickstart ~]$ hadoop fs -ls naFlume

[cloudera@quickstart ~]$ hadoop fs -cat naFlume/FlumeData.1471351131067
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
cccccccccccccccccccccccccccccc
ddddddddddddddddddddddddddd
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
ddddddddddddddddddddddddddddd
ccccccccccccccccccccccccccccccc
cccccccccccccccccccccccccccccc
ccccccccccccccccccccccccccccccc

above output is in Text Format.

*******************om aim hreem  sreem*****************************













2 comments: