Data science Software Course Training in Ameerpet Hyderabad

Data science Software Course Training in Ameerpet Hyderabad

Tuesday, 30 August 2016

MR Lab1 : WordCount



[training@localhost ~]$ cat > comment
i love hadoop
i love java
i hate coding
[training@localhost ~]$ hadoop fs -mkdir mrlab
[training@localhost ~]$ hadoop fs -copyFromLocal comment mrlab
[training@localhost ~]$ hadoop fs -cat mrlab/comment
i love hadoop
i love java
i hate coding
[training@localhost ~]$

___________________________

Eclipse steps :

create java project:

file--> new --> java project
  ex: MyMr

configure jar files.

MyMr--> src --> Build Path --> Configure build Path
      ---> Libraries ---> add external jar files.

  select folloing jars.
   /usr/lib/hadoop-*.*/hadoop-core.jar
  /usr/lib/hadoop-*.*/lib/commons-cli-*.*.jar

create package :

MyMr --> src --> new --> package
 ex: mr.analytics

create java class :

MyMr --> src --> mr.analytics --> new --> class
  ex: WordMap

__________________________________

WordMap.java:
 is a mapper program, which writes word as key and 1 as value.
----------------------
package mr.analytics;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.util.StringTokenizer;
public class WordMap extends Mapper
 <LongWritable,Text,Text,IntWritable>
{
     // i love hadoop
    public void map(LongWritable  k,Text v,
            Context  con)
     throws IOException, InterruptedException
     {
        String line = v.toString();
    StringTokenizer t = new StringTokenizer(line);
     while(t.hasMoreTokens())
     {
         String word = t.nextToken();
         con.write(new Text(word),new IntWritable(1));
     }
  }
}
---------------------
RedForSum.java
  is Reducer program, which will give sum aggregation.

----------------------------
package mr.analytics;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class RedForSum extends Reducer
<Text,IntWritable,Text,IntWritable>
{
    //   i   <1,1,1>   
   public void reduce(Text k,Iterable<IntWritable> vlist,
            Context con)
   throws IOException, InterruptedException
   {
       int tot=0;
       for(IntWritable v: vlist)
          tot+=v.get();
       con.write(k, new IntWritable(tot));
   }
}
---------------------------

Driver1.java

 is Driver program, to call mapper and reducer
-----------------
package mr.analytics;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class Driver1
{
    public static void main(String[] args)
     throws Exception
     {
        Configuration c = new Configuration();
        Job j = new Job(c,"MyFirst");
        j.setJarByClass(Driver1.class);
        j.setMapperClass(WordMap.class);
        j.setReducerClass(RedForSum.class);
        j.setOutputKeyClass(Text.class);
        j.setOutputValueClass(IntWritable.class);
         Path p1 = new Path(args[0]); //input
         Path p2 = new Path(args[1]); //output
       
FileInputFormat.addInputPath(j,p1);
FileOutputFormat.setOutputPath(j, p2);

System.exit(j.waitForCompletion(true) ? 0:1);
  }
}
---------------------

Now export all these 3 classes into jar file.

MyMr --> export --> jar -->java jar
  ex: /home/training/Desktop/myapp.jar

-------------------------------

submitting mr job:

[training@localhost ~]$ hadoop jar Desktop/myapp.jar \
>  mr.analytics.Driver1 \
>  mrlab/comment \
>  mrlab/res1

[training@localhost ~]$ hadoop fs -ls mrlab/res1
Found 3 items
-rw-r--r--   1 training supergroup          0 2016-08-30 05:27

/user/training/mrlab/res1/_SUCCESS
drwxr-xr-x   - training supergroup          0 2016-08-30 05:26

/user/training/mrlab/res1/_logs
-rw-r--r--   1 training supergroup         58 2016-08-30 05:27

/user/training/mrlab/res1/part-r-00000

[training@localhost ~]$ hadoop fs -cat mrlab/res1/part-r-00000
coding  1
hadoop  1
hate    1
i       3
java    1
love    2















1 comment: