Data science Software Course Training in Ameerpet Hyderabad

Data science Software Course Training in Ameerpet Hyderabad

Friday, 31 March 2017

Linear Regression with SGD

[cloudera@quickstart ~]$ gedit prof
[cloudera@quickstart ~]$ hadoop fs -mkdir mlib
[cloudera@quickstart ~]$ hadoop fs -
copyFromLocal prof mlib
[cloudera@quickstart ~]$

scala> val data = sc.textFile

("/user/cloudera/mlib/prof")
data: org.apache.spark.rdd.RDD[String] =

/user/cloudera/mlib/prof MapPartitionsRDD[1]

at textFile at <console>:27

scala> data.collect.take(3).foreach(println)
"a","w","h","c"
25,80,5.9,120
23,55,5.7,90


scala> val ndata = data.filter{x =>
     |     !(x.split(",")(0).contains("a"))
     | }


scala> ndata.collect.foreach(println)
25,80,5.9,120
23,55,5.7,90
23,89,6.0,130
26,80,5.9,120
23,55,5.7,90
23,69,6.0,130
28,81,5.9,120
23,55,5.9,190
23,81,6.0,130
29,87,5.9,120
23,55,5.7,190
23,89,5.0,130

scala>

scala>
     | import

org.apache.spark.mllib.regression.LabeledPoint
import

org.apache.spark.mllib.regression.LabeledPoint

scala> import

org.apache.spark.mllib.regression.LinearRegres

sionModel
import

org.apache.spark.mllib.regression.LinearRegres

sionModel

scala> import

org.apache.spark.mllib.regression.LinearRegres

sionWithSGD
import

org.apache.spark.mllib.regression.LinearRegres

sionWithSGD

scala> import

org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.Vectors

-------------
scala>  def toLabel(line:String) = {
     |              
     |           val w = line.split(",")
     |           val lbl = w(3).toDouble
     |           val f = w.take(3).map(x =>

x.toDouble)
     |           LabeledPoint(lbl,

Vectors.dense(f))
     |        }
toLabel: (line: String)

org.apache.spark.mllib.regression.LabeledPoint

scala>

scala> toLabel("23,78,5.9,120")
res8:

org.apache.spark.mllib.regression.LabeledPoint

= (120.0,[23.0,78.0,5.9])

scala>

val trainset = ndata.map(x => toLabel(x))

scala> val trainset = ndata.map(x => toLabel

(x))
trainset: org.apache.spark.rdd.RDD

[org.apache.spark.mllib.regression.LabeledPoin

t] = MapPartitionsRDD[3] at map at

<console>:37

scala>

scala> trainset.collect.foreach(println)
(120.0,[25.0,80.0,5.9])
(90.0,[23.0,55.0,5.7])
(130.0,[23.0,89.0,6.0])
(120.0,[26.0,80.0,5.9])
(90.0,[23.0,55.0,5.7])
(130.0,[23.0,69.0,6.0])
(120.0,[28.0,81.0,5.9])
(190.0,[23.0,55.0,5.9])
(130.0,[23.0,81.0,6.0])
(120.0,[29.0,87.0,5.9])
(190.0,[23.0,55.0,5.7])
(130.0,[23.0,89.0,5.0])

scala>


val numIterations = 100
val model = LinearRegressionWithSGD.train

(trainset, numIterations)


val valuesAndPreds = trainset.map {
   x =>
  val prediction =       model.predict

(x.features)

  (x.label, prediction)
}

// above contains , y and ycap,
 y is actual label  and ycap is predicted

label.

  [ label means response variable ].


scala> valuesAndPreds.collect.foreach(println)
(120.0,-7.150280334821135E301)
(90.0,-5.078652953403039E301)
(130.0,-7.824818198048878E301)
(120.0,-7.176538392878548E301)
(90.0,-5.078652953403039E301)
(130.0,-6.210523036282773E301)
(120.0,-7.309769267081678E301)
(190.0,-5.07989526649868E301)
(130.0,-7.179100133342436E301)
(120.0,-7.820315873668922E301)
(190.0,-5.078652953403039E301)
(130.0,-7.818606632570674E301)


val mse = valuesAndPreds.map{ x =>
       val y = x._1.toInt
       val ycap = x._2.toInt
       val e = y - ycap
       e*e
     }.mean

continue the trails by improving
  number of iterations. till you meet

convergence.  [[ mse wont be changed. ]]




val  acc = valuesAndPreds.map{ x =>
      val y = x._1.toInt
      val ycap = x._2.toInt
   
      val dist = ((y-ycap)*100)/y

   val stat=if (dist>= -20 & dist<= 20) "Pass"

else "Fail"
      (stat,1)
     }

val accres = acc.reduceByKey(_+_)

---------------------------------

if accuracy satisfied,
   apply the predictions on predictables(live

data )


   model.predict(<dense vector>)
    dense vector should contain
       only features.


-----------------------------------





 
     







5 comments:

  1. Can we do performance testing of bigdata part using Rest api

    ReplyDelete
  2. I really appreciate information shared above. It’s of great help. If someone want to learn Online (Virtual) instructor lead live training in Apache spark mlib, kindly contact us http://www.maxmunus.com/contact
    MaxMunus Offer World Class Virtual Instructor led training on Apache spark mlib. We have industry expert trainer. We provide Training Material and Software Support. MaxMunus has successfully conducted 100000+ trainings in India, USA, UK, Australlia, Switzerland, Qatar, Saudi Arabia, Bangladesh, Bahrain and UAE etc.

    For Free Demo Contact us:
    Name : Arunkumar U
    Email : arun@maxmunus.com
    Skype id: training_maxmunus
    Contact No.-+91-9738507310
    Company Website –http://www.maxmunus.com


    ReplyDelete