Data science Software Course Training in Ameerpet Hyderabad

Data science Software Course Training in Ameerpet Hyderabad

Thursday, 30 March 2017

R and Analytics Basics 2

sankara.deva2016@gmail.com

bharat sreeram , Ventech It Solutions
-----------------------------------------------------------------------------------------------

> info =

  read.csv("C:/Users/Hadoop/Desktop/info.txt")
> info
   id    name   sal sex city
1 101    Amar 40000   m  hyd
2 102   Amala 50000   f  del
3 103   sunil 70000   m  hyd
4 104 sunitha 80000   f  hyd
5 105  ankith 90000   m  del
6 106 ankitha 60000   f  hyd
>
> class(info)
[1] "data.frame"
> str(info)
 -- structure of info.
'data.frame':   6 obs. of  5 variables:
 $ id  : int  101 102 103 104 105 106
 $ name: Factor w/ 6 levels "Amala","Amar",..: 2 1 5 6 3 4
 $ sal : int  40000 50000 70000 80000 90000 60000
 $ sex : Factor w/ 2 levels "f","m": 2 1 2 1 2 1
 $ city: Factor w/ 2 levels "del","hyd": 2 1 2 2 1 2
>
> info$name
[1] Amar    Amala   sunil   sunitha ankith  ankitha
Levels: Amala Amar ankith ankitha sunil sunitha
> info$sal
[1] 40000 50000 70000 80000 90000 60000
>
-------------------
Updating Column:
 info$sal = info$sal+1000
Generating new Field for Data frame.
 info$tax = info$sal*10/100
  # conditional transformation,.
 info$grade = "C"
 info$grade[info$sal>=50000 & info$sal<=80000]    = "B"
 info$grade[info$sal>80000]="A"
> info
   id    name   sal sex city  tax grade
1 101    Amar 41000   m  hyd 4100     C
2 102   Amala 51000   f  del 5100     B
3 103   sunil 71000   m  hyd 7100     B
4 104 sunitha 81000   f  hyd 8100     A
5 105  ankith 91000   m  del 9100     A
6 106 ankitha 61000   f  hyd 6100     B
>
Grouping Aggregations:
--------------------------------
 res1 =
   aggregate( sal ~ sex, data=info, FUN=sum)
> res1
  sex    sal
1   f 193000
2   m 203000
>

 res2 =
   aggregate( sal ~ sex, data=info, FUN=mean)
> res2
  sex      sal
1   f 64333.33
2   m 67666.67

  res3 =
   aggregate( sal ~ sex, data=info, FUN=max)
> res3
  sex   sal
1   f 81000
2   m 91000

 res4 =
   aggregate( sal ~ sex, data=info, FUN=min)
> res4
  sex   sal
1   f 51000
2   m 41000


 res5 =
   aggregate( sal ~ sex, data=info, FUN=length)
> res5
  sex sal
1   f   3
2   m   3

---------------------------
 res6 = aggregate(sal ~ grade, data=info,
   FUN = length)
> res6
  grade sal
1     A   2
2     B   3
3     C   1

-----------------------------------
  select sex, grade, sum(sal) from info
    group by sex, grade;
Grouping by multiple columns of data frame.
 res7 =
   aggregate( sal ~ sex + grade, data=info, FUN=sum)
> res7
  sex grade    sal
1   f     A  81000
2   m     A  91000
3   f     B 112000
4   m     B  71000
5   m     C  41000

-----------------------------------------

 select sex, sum(sal), max(sal),
      min(sal), avg(sal), count(*)
   from info group by sex;
# performing multiple aggregation,
   of each data group.

Performing Multiple Aggregations:
r1 = aggregate(sal ~ sex , data=info , FUN=sum)
r2 = aggregate(sal ~ sex , data=info , FUN=max)
r3 = aggregate(sal ~ sex , data=info , FUN=min)
r4 = aggregate(sal ~ sex , data=info , FUN=mean)
r5 = aggregate(sal ~ sex , data=info , FUN=length)
resall = data.frame(sex=r1$sex,
          tot=r1$sal, avg=r4$sal,
         max= r2$sal, min=r3$sal,
        cnt=r5$sal)
> resall
  sex    tot      avg   max   min cnt
1   f 193000 64333.33 81000 51000   3
2   m 203000 67666.67 91000 41000   3
>
--------------------------------------
Working With Matrices.
 v = 1:15
  m1 = matrix(v, nrow=3)
 m2 = matrix(v, nrow=3 ,byrow=T)
 m3 = matrix(v, ncol=5, byrow=T)
 m4 = matrix(1:12,4)
 Operations of matrices.
 m = matrix(c(10,20,30,40), nrow=2)
 mx = matrix(c(12,34,56,23), nrow=2)
 r1 = m + mx   # element to element sum
 r2 = m * mx   #   "        "       multiplication
 r3 = m %*% mx  # matrix multiplication
 r4 = solve(m) # inverse of matrix.
 r5 = t(m) # transpose of matrix.
-------------------------------------------




























----------------------




























































No comments:

Post a Comment